今天给各位分享高一数学下学期知识点(高一下学期数学章节)的知识,其中也会对高一数学下学期知识点(高一下学期数学章节)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文导读目录:

1、高一数学必修知识点总结

2、人教版高一必修一数学知识点总结(优秀3篇)

3、高一数学下学期知识点(高一下学期数学章节)

  以下是小编为大家准备的高一数学必修知识点总结,仅供参考,欢迎大家阅读。如果这14篇文章还不能满足您的需求,您还可以在本站搜索到更多与高一数学必修知识点总结相关的文章。   考点一、映射的概念   1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多   2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一   考点二、函数的概念   1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。   2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。   3.区间的概念:设a,bR,且a   ①(a,b)={xa   ⑤(a,+∞)={_>a}⑥[a,+∞)={_≥a}⑦(-∞,b)={_   考点三、函数的表示方法   1.函数的三种表示方法列表法图象法解析法   2.分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:①分段函数是一个函数,不要误认为是几个函数。②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。   考点四、求定义域的几种情况   ①若f(x)是整式,则函数的定义域是实数集R;   ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;   ③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;   ④若f(x)是对数函数,真数应大于零。   ⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。   ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;   ⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题   高一数学复习方法   读好课本,学会研究   同学们应从高一开始,增强自己从课本入手进行研究的意识。同学们可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注。要通过对典型例题的讲解分析,归纳出解决这类问题的数学思想和方法,并做好解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,同学们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,更是一个研究过程。   记好笔记,注重课堂   “要学好数学,培养好的听课习惯也很重要。”同学们在听课的时候要集中注意力,把老师讲的关键性部分听懂、听会。听的时候要注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性地记好笔记,领会课上老师的主要精神与意图。   做好作业,讲究规范   在课堂、课外练习中,培养良好的作业习惯也很有必要。同学们在做作业时,不但要做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径。作业应独立完成,这样可以培养独立思考的能力和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,拖沓的做作业习惯容易使思维松散、精力不集中,这对培养数学能力是有害而无益的。   写好总结,把握规律   “不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”要学好数学,同学们就应该经常做好总结,把握规律。通过与老师、同学平时的接触交流,可以逐步总结出一般性的学习步骤,包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。应坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。   一、集合有关概念   1.集合的含义   2.集合的中元素的三个特性:   (1)元素的确定性如:世界上的山   (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}   (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合   3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}   (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   (2)集合的表示方法:列举法与描述法。   注意:常用数集及其记法:   非负整数集(即自然数集)记作:N   正整数集:N或N+   整数集:Z   有理数集:Q   实数集:R   1)列举法:{a,b,c……}   2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}   3)语言描述法:例:{不是直角三角形的三角形}   4)Venn图:   4、集合的分类:   (1)有限集含有有限个元素的集合   (2)无限集含有无限个元素的集合   (3)空集不含任何元素的集合例:{x|x2=-5}   二、集合间的基本关系   1.“包含”关系—子集   注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。   反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA   2.“相等”关系:A=B(5≥5,且5≤5,则5=5)   实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”   即:①任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果AíB,BíC,那么AíC   ④如果AíB同时BíA那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。   4.子集个数:   有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集   三、集合的运算   运算类型交集并集补集   定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.   由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).   高一数学复习方法推荐   读好课本,学会研究   同学们应从高一开始,增强自己从课本入手进行研究的意识。同学们可以把每条定理、每道例题都当做习题,认真地重证、重解,并适当加些批注。要通过对典型例题的讲解分析,归纳出解决这类问题的数学思想和方法,并做好解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,同学们要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,更是一个研究过程。   记好笔记,注重课堂   “要学好数学,培养好的听课习惯也很重要。”同学们在听课的时候要集中注意力,把老师讲的关键性部分听懂、听会。听的时候要注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性地记好笔记,领会课上老师的主要精神与意图。   做好作业,讲究规范   在课堂、课外练习中,培养良好的作业习惯也很有必要。同学们在做作业时,不但要做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径。作业应独立完成,这样可以培养独立思考的能力和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,拖沓的做作业习惯容易使思维松散、精力不集中,这对培养数学能力是有害而无益的。   写好总结,把握规律   “不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”要学好数学,同学们就应该经常做好总结,把握规律。通过与老师、同学平时的接触交流,可以逐步总结出一般性的学习步骤,包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。应坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。   1、柱、锥、台、球的结构特征   (1)棱柱:   几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.   (2)棱锥   几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.   (3)棱台:   几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点   (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成   几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.   (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成   几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.   (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成   几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.   (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体   几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.   3、空间几何体的直观图——斜二测画法   斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;   ②原来与y轴平行的线段仍然与y平行,长度为原来的一半.   4、柱体、锥体、台体的表面积与体积   (1)几何体的表面积为几何体各个面的面积的和.   (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)   (3)柱体、锥体、台体的体积公式   一、指数函数   (一)指数与指数幂的运算   1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质   【函数的应用】   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   1(代数法)求方程的实数根;   2(几何法)对于不能用求根公式的`方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   3)△0时,开口方向向上,a0时,抛物线向上开口;当a0时,等差数列中的数随项数的增大而增大;当dm),则S=(a-b).   ⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.   ⑺记等差数列{a}的前n项和为S.①若a>0,公差d0.   ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.   ⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   3)△2},{x|x-3>2}   3)语言描述法:例:{不是直角三角形的三角形}   4)Venn图:   4、集合的分类:   (1)有限集含有有限个元素的集合   (2)无限集含有无限个元素的集合   (3)空集不含任何元素的集合   二、集合间的基本关系   1.“包含”关系—子集   注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。   反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA   2.“相等”关系:A=B(5≥5,且5≤5,则5=5)   实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”   即:①任何一个集合是它本身的子集。A?A   ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果A?B,B?C,那么A?C   ④如果A?B同时B?A那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。   4.子集个数:   有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集   三、集合的运算   运算类型交集并集补集   定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.   由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).   基本初等函数   一、指数函数   (一)指数与指数幂的运算   1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质   函数的应用   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   1(代数法)求方程的实数根;   2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   3)△0)恒成立,则y=f(x)是周期为2a的周期函数;   (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;   (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;   (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;   (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;   (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;   5.方程k=f(x)有解 k∈D(D为f(x)的值域);   6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;   7.(1) (a>0,a≠1,b>0,n∈R+);   (2) l og a N= ( a>0,a≠1,b>0,b≠1);   (3) l og a b的符号由口诀“同正异负”记忆;   (4) a log a N= N ( a>0,a≠1,N>0 );   8. 判断对应是否为映射时,抓住两点:   (1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;   9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。   10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).   11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;   12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题   13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。   重点难点讲解:   1.回归分析:   就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析方法。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。   2.线性回归方程   设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。   其中。   3.线性相关性检验   线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。   ①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。   ②由公式,计算r的值。   ③检验所得结果   如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。   如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。   典型例题讲解:   例1.从某班50名学生中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建立该10名学生的物理成绩对数学成绩的线性回归模型。   解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为,   计算,代入公式得∴所求线性回归模型为=0.74x+22.28。   说明:将自变量x的值分别代入上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。大家可以在老师的帮助下对自己班的数学、化学成绩进行分析。   例2.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:x23456y2.23.85.56.57.0   若由资料可知y对x成线性相关关系。试求:   (1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?   分析:本题为了降低难度,告诉了y与x间成线性相关关系,目的是训练公式的使用。   解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536于是b=,。∴线性回归方程为:=bx+a=1.23x+0.08。   (2)当x=10时,=1.23×10+0.08=12.38(万元)即估计使用10年时维修费用是12.38万元。   说明:本题若没有告诉我们y与x间是线性相关的,应首先进行相关性检验。如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出回归方程也是没有意义的,而且其估计与预测也是不可信的。   例3.某省七年的国民生产总值及社会商品零售总额如下表所示:已知国民生产总值与社会商品的零售总额之间存在线性关系,请建立回归模型。年份国民生产总值(亿元)   社会商品零售总额(亿元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合计4333.012194.24   解:设国民生产总值为x,社会商品零售总额为y,设线性回归模型为。   依上表计算有关数据后代入的表达式得:∴所求线性回归模型为y=0.445957x+37.4148,表明国民生产总值每增加1亿元,社会商品零售总额将平均增加4459.57万元。   例4.已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜每年平均产量yt之间的关系有如下数据:年份19851986198719881989199019911992x(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份19931994199519961997199871999x(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x与y之间的相关系数,并检验是否线性相关;   (2)若线性相关,求蔬菜产量y与使用氮肥量之间的回归直线方程,并估计每单位面积施肥150kg时,每单位面积蔬菜的年平均产量。   分析:(1)使用样本相关系数计算公式来完成;(2)查表得出显著水平0.05与自由度15-2相应的相关系数临界值r0.05比较,若r>r0.05,则线性相关,否则不线性相关。   解:(1)列出下表,并用科学计算器进行有关计算:i123456789101112131415xi707480788592909592108115123130138145yi5.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0xiyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜产量与施用氮肥量的相关系数:r=由于n=15,故自由度15-2=13。由相关系数检验的临界值表查出与显著水平0.05及自由度13相关系数临界值r0.05=0.514,则r>r0.05,从而说明蔬菜产量与氮肥量之间存在着线性相关关系。   (2)设所求的回归直线方程为=bx+a,则∴回归直线方程为=0.0931x+0.7102。   当x=150时,y的估值=0.0931×150+0.7102=14.675(t)。   说明:求解两个变量的相关系数及它们的回归直线方程的计算量较大,需要细心谨慎计算,如果会使用含统计的科学计算器,能简单得到,这些量,也就无需有制表这一步,直接算出结果就行了。另外,利用计算机中有关应用程序也可以对这些数据进行处理。   ★ 高一数学必修知识点   ★ 高一数学必修二知识点总结   ★ 高一数学必修2知识点   ★ 高一数学必修三知识点总结(超)   ★ 高一数学知识点总结   ★ 高一数学知识点总结精选   ★ 数学必修二知识点总结   ★ 数学必修五知识点总结   ★ 数学必修一知识点总结   ★ 数学必修四知识点总结  认真上课   上课要认真听讲,不走神尽量少走神不要自以为是,要虚心向老师学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的自主学习间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。   整理纠错本   上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构、的解题方法、的例题、不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上。   一、定义与定义式:   自变量x和因变量y有如下关系:   y=kx+b   则此时称y是x的一次函数。   特别地,当b=0时,y是x的正比例函数。   即:y=kx(k为常数,k0)   二、一次函数的性质:   1.y的变化值与对应的x的变化值成正比例,比值为k   即:y=kx+b(k为任意不为零的实数b取任何实数)   2.当x=0时,b为函数在y轴上的截距。   三、一次函数的图像及性质:   1.作法与图形:通过如下3个步骤   (1)列表;   (2)描点;   (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)   2.性质:   (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。   (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。   3.k,b与函数图像所在象限:   当k0时,直线必通过一、三象限,y随x的增大而增大;   当k0时,直线必通过二、四象限,y随x的`增大而减小。   当b0时,直线必通过一、二象限;   当b=0时,直线通过原点   当b0时,直线必通过三、四象限。   特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。   这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。   四、确定一次函数的表达式:   已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。   (1)设一次函数的表达式(也叫解析式)为y=kx+b。   (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①和y2=kx2+b②   (3)解这个二元一次方程,得到k,b的值。   (4)最后得到一次函数的表达式。   五、一次函数在生活中的应用:   1.当时间t一定,距离s是速度v的一次函数。s=vt。   2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。   六、常用公式:(不全,希望有人补充)   1.求函数图像的k值:(y1-y2)/(x1-x2)   2.求与x轴平行线段的中点:|x1-x2|/2   3.求与y轴平行线段的中点:|y1-y2|/2   4.求任意线段的长:(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)   拓展:   (一)   直线和平面的位置关系:   直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行   ①直线在平面内有无数个公共点   ②直线和平面相交有且只有一个公共点   直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。   esp.空间向量法(找平面的法向量)   规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0角   由此得直线和平面所成角的取值范围为[0,90]   最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角   三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直   esp.直线和平面垂直   直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。   直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。   直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。   ③直线和平面平行没有公共点   直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。   直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。   直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。   (二)   (1)直线的倾斜角   定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α180°   (2)直线的斜率   ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。   ②过两点的直线的斜率公式:   注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;   (2)k与P1、P2的顺序无关;   (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;   (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。   (3)直线方程   ①点斜式:   直线斜率k,且过点   注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。   ②斜截式:,直线斜率为k,直线在y轴上的截距为b   ③两点式:()直线两点,   ④截矩式:   其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。   ⑤一般式:(A,B不全为0)   ⑤一般式:(A,B不全为0)   注意:○1各式的适用范围   ○2特殊的方程如:平行于x轴的直线:   (b为常数);平行于y轴的直线:   (a为常数);   (4)直线系方程:即具有某一共同性质的直线   (一)平行直线系   平行于已知直线(是不全为0的常数)的直线系:(C为常数)   (二)过定点的直线系   (ⅰ)斜率为k的直线系:,直线过定点;   (ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。   (5)两直线平行与垂直   当时注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。   (6)两条直线的交点   相交   交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合   (7)两点间距离公式:设是平面直角坐标系中的两个点,则   (8)点到直线距离公式:一点到直线的距离   (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。   首先,上课要认真听讲,一定要牢记数学最基本的公式和原理。   其次,数学呢,最重要的就是习题量。平时要多做题,必要时可以进行题海战术,刷新自己的做题量。   再次,建立错题本,把自己做错的题目重新做一遍并分类整理,做到举一反三。   最后,在学习的过程中,要学会思考,学会交流,及时和老师还有同学交流学习心得,增长经验。  内容导航:高一数学下学期知识点高一下学期数学章节高一下学期数学公式汇总高一数学必修一免费教学***高一数学知识点笔记整理   ∪:并集。比如,a∪b表示集合a和集合b中所有元素组成的集合   ∩:   交集。比如,a∩b表示既在集合a中又在集合b中的所有元素组成的集合   ∈:属于。比如,a∈a表示元素a属于集合a   { }:这是集合的一种表示方法,比如集合a={1,7,6}表示集合a中有1、7、6这三个元素   ∩躺着的表示前一个集合包含于后一个集合,即前一个集合中的元素都在后一个集合里   ∩躺着加≠表示表示前一个集合包含于后一个集合,而且这两个集合不相等   (作者:快乐永随)   一共10章,具体如下   高一数学会学以下内容:   高一上学期有五章   第一章:集合与常用逻辑用语   第二章:一元二次函数,方程和不等式   第三章:函数的概念与性质   第四章:指数函数与对数函数   第五章:三角函数   高一下学期有五章   第六章:平面向量及其应用   第七章:复数   第八章:立体几何初步   第九章:统计   第十章:概率   这些内容当中,第三,四,五章的函数以及第六章的平面向量,第八章的立体几何是重难点,需要认真学习。   抛物线:y = ax *+ bx + c   就是y等于ax 的平方加上 bx再加上 c   a>0时开口向上   a<0时开口向下   c = 0时抛物线经过原点   b = 0时抛物线对称轴为y轴   还有顶点式y =   a(x+h)* + k   就是y等于a乘以(x+h)的平方+k   -h是顶点坐标的x   k是顶点坐标的y   一般用于求最大值与最小值   抛物线标准方程:y^2=2px   它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2   由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py   关于圆的公式   体积=4/3(pi)(r^3)   面积=(pi)(r^2)   周长=2(pi)r   圆的标准方程   (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标   圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0   (一)椭圆周长计算公式   椭圆周长公式:L=2πb+4(a-b)   椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。   (二)椭圆面积计算公式   椭圆面积公式: S=πab   椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。   以上椭圆周长、面积公式中虽然没有出现椭圆周率   T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。   椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高   三角函数   两角和公式   sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA   cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB   tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)   cot(A   +B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)   倍角公式   tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota   cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a   sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0   cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+   2π*(n-1)/n]=0 以及   sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2   tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0   四倍角公式:   sin4A=-4*(cosA*sinA*(2*sinA^2-1))   cos4A=1+(-8*cosA^2+8*cosA^4)   tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)   五倍角公式:   sin5A=16sinA^5-20sinA^3+5sinA   cos5A=16cosA^5-20cosA^3+5cosA   tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)   六倍角公式:   sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))   cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))   tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)   七倍   角公式:   sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))   cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))   tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)   八倍角公式:   sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))   cos8A=1+(160*cosA^4-2   56*cosA^6+128*cosA^8-32*cosA^2)   tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)   九倍角公式:   sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))   cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))   tan9A=tanA*(9-84*tanA^2+   126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)   十倍角公式:   sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))   cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))   tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-6   0*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)   ·万能公式:   sinα=2tan(α/2)/[1+tan^2(α/2)]   cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]   tanα=2tan(α/2)/[1-tan^2(α/2)]   半角公式   sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)   cos(A/2)=√((1+cosA)/2) cos(A/2   )=-√((1+cosA)/2)   tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))   cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))   和差化积   2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)   2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)   sin   A+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)   tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB   cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB   某些数列前n项和   1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2   2+4+6+8+10+12+14+…+(   2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6   1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3   正弦定理a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径   余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角   乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-a   b+b2) a3-b3=(a-b(a2+ab+b2)   三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b   a-b|≥|a|-|b| -|a|≤a≤|a   一元二次方程的解   -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a   根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理   判别式b2-4a=0 注:方程有相等的两实根   b2-4ac>0 注:方程有两个不相等的个实根   b2-4ac<0 注:方程有共轭复   数根   几何图形的公式   圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标   圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0   抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py   直棱柱侧面积S=c*h斜棱柱侧面积 S=c'*h   正棱锥侧面积 S=1/2c*h'正棱台侧面积 S=1/2(c+c')h'   圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2   圆柱侧面积 S=c*h=2pi*h 圆锥侧面积   S=1/2*c*l=pi*r*l   弧长公式l=a*r a是圆心角的弧度数r>0扇形面积公式s=1/2*l*r   锥体体积公式V=1/3*S*H圆锥体体积公式 V=1/3*pi*r2h   斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长   柱体体积公式 V=s*h圆柱体V=pi*r2h   图形周长 面积 体积公式   长方形的周长=(长+宽)×2   正方形的周长=边长×4   长方形的面积=长×宽   正方形的面积=边长×边长   三角形的面积   已知三角形底a,高h,则   S=ah/2   已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)   和:(a+b+c)*(a+b-c)*1/4   已知三角形两边a,b,这两边夹角C,则S=absinC/2   设三角形三边分别为a、b、c,内切圆半径为r   则三角形面积=(a+b+c)r/2   设三角形三边分别为a、b、c,外接圆半径为r   则三角形面积=abc/4r   已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)   ^2]} (“三斜求积” 南宋秦九韶)   a b 1   S△=1/2 * | c d 1   e f 1   【| a b 1   c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC   e f 1   选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】   秦九韶公式   S=√[(Ma+Mb+Mc)   *(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3   其中Ma,Mb,Mc为三角形的中线长.   平行四边形的面积=底×高   梯形的面积=(上底+下底)×高÷2   直径=半径×2 半径=直径÷2   圆的周长=圆周率×直径=   圆周率×半径×2   圆的面积=圆周率×半径×半径   长方体的表面积=   (长×宽+长×高+宽×高)×2   长方体的体积 =长×宽×高   正方体的表面积=棱长×棱长×6   正方体的体积=棱长×棱长×棱长   圆柱的侧面积=底面圆   的周长×高   圆柱的表面积=上下底面面积+侧面积   圆柱的体积=底面积×高   圆锥的体积=底面积×高÷3   长方体(正方体、圆柱体)   的体积=底面积×高   平面图形   名称 符号 周长C和面积S   正方形 a—边长 C=4a   S=a2   长方形 a和b-边长 C=2(a+b)   S=ab   三角形 a,b,c-三边长   h-a边上的高   s-周长的一半   A,B,C-内角   其中s=(a+b+c)/2 S=ah/2   =a   b/2?sinC   =[s(s-a)(s-b)(s-c)]1/2   =a2sinBsinC/(2sinA)   高中课本并不是像初中一样分上下册,数学分必修和选修,必修从一到五,选修有的会上有的不会,必修一是你进高中学的第一   本数学书   1、认识高一数学的特点   高一数学内容难度增大,并增加数学知识的应用,要求学生会使用文字、符号和图形等数学语言表达问题进行交流,数学思想方法贯穿教材始终,对能力提出更高的要求。   2、正确对待学习中遇到的新困难和新问题   高一数学内容的巨变和学习方法的落后,在学习高一数学的过程中,肯定会遇到不少困难和问题,要有克服困难的勇气和信心,胜不骄,败不馁,千万不能让问题堆积如山,形成恶性循环,而是在老师的引导下寻求解决问题的方法,培养分析问题,解决问   题的能力。   3、要将被动学习模式转变为主动学习模式   高一数学不是靠老师教会的,而是在老师引导下,靠自己主动思考去获取的,学习数学的最佳状态就是积极主动参考教学过程,对数学活动持一定的主动权,并经常能发现和推出问题。   4、要养成良好的个性品质   高一数学要树立正确的学习目的,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度以及独立思考,勇于探索的创新精神。   5、记好笔记,注重课堂   首先,在高一数学课堂教学中培养好的听课习惯是很重要的,当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂,听会。
高一数学下学期知识点(高一下学期数学章节)的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一数学下学期知识点(高一下学期数学章节)高一数学下学期知识点(高一下学期数学章节)的信息别忘了在本站进行查找喔。

未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处

原文地址:http://www.zgj9.cn/post/4754.html发布于:2025-12-01